3.27.68 \(\int \frac {\sqrt {1-2 x} (3+5 x)^{5/2}}{(2+3 x)^{7/2}} \, dx\) [2668]

3.27.68.1 Optimal result
3.27.68.2 Mathematica [C] (verified)
3.27.68.3 Rubi [A] (verified)
3.27.68.4 Maple [B] (verified)
3.27.68.5 Fricas [C] (verification not implemented)
3.27.68.6 Sympy [F(-1)]
3.27.68.7 Maxima [F]
3.27.68.8 Giac [F]
3.27.68.9 Mupad [F(-1)]

3.27.68.1 Optimal result

Integrand size = 28, antiderivative size = 160 \[ \int \frac {\sqrt {1-2 x} (3+5 x)^{5/2}}{(2+3 x)^{7/2}} \, dx=-\frac {12758 \sqrt {1-2 x} \sqrt {3+5 x}}{6615 \sqrt {2+3 x}}-\frac {118 \sqrt {1-2 x} (3+5 x)^{3/2}}{315 (2+3 x)^{3/2}}-\frac {2 \sqrt {1-2 x} (3+5 x)^{5/2}}{15 (2+3 x)^{5/2}}+\frac {31588 \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )}{6615}-\frac {12758 \sqrt {\frac {11}{3}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right )}{6615} \]

output
31588/19845*EllipticE(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2) 
-12758/19845*EllipticF(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2 
)-118/315*(3+5*x)^(3/2)*(1-2*x)^(1/2)/(2+3*x)^(3/2)-2/15*(3+5*x)^(5/2)*(1- 
2*x)^(1/2)/(2+3*x)^(5/2)-12758/6615*(1-2*x)^(1/2)*(3+5*x)^(1/2)/(2+3*x)^(1 
/2)
 
3.27.68.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 7.87 (sec) , antiderivative size = 94, normalized size of antiderivative = 0.59 \[ \int \frac {\sqrt {1-2 x} (3+5 x)^{5/2}}{(2+3 x)^{7/2}} \, dx=\frac {2 \left (-\frac {3 \sqrt {1-2 x} \sqrt {3+5 x} \left (36919+113319 x+87021 x^2\right )}{(2+3 x)^{5/2}}-i \sqrt {33} \left (15794 E\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right )|-\frac {2}{33}\right )-9415 \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right ),-\frac {2}{33}\right )\right )\right )}{19845} \]

input
Integrate[(Sqrt[1 - 2*x]*(3 + 5*x)^(5/2))/(2 + 3*x)^(7/2),x]
 
output
(2*((-3*Sqrt[1 - 2*x]*Sqrt[3 + 5*x]*(36919 + 113319*x + 87021*x^2))/(2 + 3 
*x)^(5/2) - I*Sqrt[33]*(15794*EllipticE[I*ArcSinh[Sqrt[9 + 15*x]], -2/33] 
- 9415*EllipticF[I*ArcSinh[Sqrt[9 + 15*x]], -2/33])))/19845
 
3.27.68.3 Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 175, normalized size of antiderivative = 1.09, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.321, Rules used = {108, 27, 167, 27, 167, 27, 176, 123, 129}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {1-2 x} (5 x+3)^{5/2}}{(3 x+2)^{7/2}} \, dx\)

\(\Big \downarrow \) 108

\(\displaystyle \frac {2}{15} \int \frac {(19-60 x) (5 x+3)^{3/2}}{2 \sqrt {1-2 x} (3 x+2)^{5/2}}dx-\frac {2 \sqrt {1-2 x} (5 x+3)^{5/2}}{15 (3 x+2)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{15} \int \frac {(19-60 x) (5 x+3)^{3/2}}{\sqrt {1-2 x} (3 x+2)^{5/2}}dx-\frac {2 \sqrt {1-2 x} (5 x+3)^{5/2}}{15 (3 x+2)^{5/2}}\)

\(\Big \downarrow \) 167

\(\displaystyle \frac {1}{15} \left (\frac {2}{63} \int \frac {3 (333-2690 x) \sqrt {5 x+3}}{2 \sqrt {1-2 x} (3 x+2)^{3/2}}dx-\frac {118 \sqrt {1-2 x} (5 x+3)^{3/2}}{21 (3 x+2)^{3/2}}\right )-\frac {2 \sqrt {1-2 x} (5 x+3)^{5/2}}{15 (3 x+2)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{15} \left (\frac {1}{21} \int \frac {(333-2690 x) \sqrt {5 x+3}}{\sqrt {1-2 x} (3 x+2)^{3/2}}dx-\frac {118 \sqrt {1-2 x} (5 x+3)^{3/2}}{21 (3 x+2)^{3/2}}\right )-\frac {2 \sqrt {1-2 x} (5 x+3)^{5/2}}{15 (3 x+2)^{5/2}}\)

\(\Big \downarrow \) 167

\(\displaystyle \frac {1}{15} \left (\frac {1}{21} \left (\frac {2}{21} \int -\frac {5 (31588 x+4919)}{2 \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {12758 \sqrt {1-2 x} \sqrt {5 x+3}}{21 \sqrt {3 x+2}}\right )-\frac {118 \sqrt {1-2 x} (5 x+3)^{3/2}}{21 (3 x+2)^{3/2}}\right )-\frac {2 \sqrt {1-2 x} (5 x+3)^{5/2}}{15 (3 x+2)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{15} \left (\frac {1}{21} \left (-\frac {5}{21} \int \frac {31588 x+4919}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {12758 \sqrt {1-2 x} \sqrt {5 x+3}}{21 \sqrt {3 x+2}}\right )-\frac {118 \sqrt {1-2 x} (5 x+3)^{3/2}}{21 (3 x+2)^{3/2}}\right )-\frac {2 \sqrt {1-2 x} (5 x+3)^{5/2}}{15 (3 x+2)^{5/2}}\)

\(\Big \downarrow \) 176

\(\displaystyle \frac {1}{15} \left (\frac {1}{21} \left (-\frac {5}{21} \left (\frac {31588}{5} \int \frac {\sqrt {5 x+3}}{\sqrt {1-2 x} \sqrt {3 x+2}}dx-\frac {70169}{5} \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx\right )-\frac {12758 \sqrt {1-2 x} \sqrt {5 x+3}}{21 \sqrt {3 x+2}}\right )-\frac {118 \sqrt {1-2 x} (5 x+3)^{3/2}}{21 (3 x+2)^{3/2}}\right )-\frac {2 \sqrt {1-2 x} (5 x+3)^{5/2}}{15 (3 x+2)^{5/2}}\)

\(\Big \downarrow \) 123

\(\displaystyle \frac {1}{15} \left (\frac {1}{21} \left (-\frac {5}{21} \left (-\frac {70169}{5} \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {31588}{5} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\right )-\frac {12758 \sqrt {1-2 x} \sqrt {5 x+3}}{21 \sqrt {3 x+2}}\right )-\frac {118 \sqrt {1-2 x} (5 x+3)^{3/2}}{21 (3 x+2)^{3/2}}\right )-\frac {2 \sqrt {1-2 x} (5 x+3)^{5/2}}{15 (3 x+2)^{5/2}}\)

\(\Big \downarrow \) 129

\(\displaystyle \frac {1}{15} \left (\frac {1}{21} \left (-\frac {5}{21} \left (\frac {12758}{5} \sqrt {\frac {11}{3}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right )-\frac {31588}{5} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\right )-\frac {12758 \sqrt {1-2 x} \sqrt {5 x+3}}{21 \sqrt {3 x+2}}\right )-\frac {118 \sqrt {1-2 x} (5 x+3)^{3/2}}{21 (3 x+2)^{3/2}}\right )-\frac {2 \sqrt {1-2 x} (5 x+3)^{5/2}}{15 (3 x+2)^{5/2}}\)

input
Int[(Sqrt[1 - 2*x]*(3 + 5*x)^(5/2))/(2 + 3*x)^(7/2),x]
 
output
(-2*Sqrt[1 - 2*x]*(3 + 5*x)^(5/2))/(15*(2 + 3*x)^(5/2)) + ((-118*Sqrt[1 - 
2*x]*(3 + 5*x)^(3/2))/(21*(2 + 3*x)^(3/2)) + ((-12758*Sqrt[1 - 2*x]*Sqrt[3 
 + 5*x])/(21*Sqrt[2 + 3*x]) - (5*((-31588*Sqrt[11/3]*EllipticE[ArcSin[Sqrt 
[3/7]*Sqrt[1 - 2*x]], 35/33])/5 + (12758*Sqrt[11/3]*EllipticF[ArcSin[Sqrt[ 
3/7]*Sqrt[1 - 2*x]], 35/33])/5))/21)/21)/15
 

3.27.68.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 108
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(a + b*x)^(m + 1)*(c + d*x)^n*((e + f*x)^p/(b*(m + 1))) 
, x] - Simp[1/(b*(m + 1))   Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f* 
x)^(p - 1)*Simp[d*e*n + c*f*p + d*f*(n + p)*x, x], x], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && LtQ[m, -1] && GtQ[n, 0] && GtQ[p, 0] && (IntegersQ[2*m, 2 
*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, m + n])
 

rule 123
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_ 
)]), x_] :> Simp[(2/b)*Rt[-(b*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x] 
/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /; FreeQ[{a, 
b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !L 
tQ[-(b*c - a*d)/d, 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d 
), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])
 

rule 129
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x 
_)]), x_] :> Simp[2*(Rt[-b/d, 2]/(b*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[ 
Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)/(d*(b*e - 
a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ 
[(b*e - a*f)/b, 0] && PosQ[-b/d] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d 
*e - c*f)/d, 0] && GtQ[-d/b, 0]) &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(( 
-b)*e + a*f)/f, 0] && GtQ[-f/b, 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ 
[((-d)*e + c*f)/f, 0] && GtQ[((-b)*e + a*f)/f, 0] && (PosQ[-f/d] || PosQ[-f 
/b]))
 

rule 167
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + 
 d*x)^n*((e + f*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] - Simp[1/(b*(b*e - 
a*f)*(m + 1))   Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[b* 
c*(f*g - e*h)*(m + 1) + (b*g - a*h)*(d*e*n + c*f*(p + 1)) + d*(b*(f*g - e*h 
)*(m + 1) + f*(b*g - a*h)*(n + p + 1))*x, x], x], x] /; FreeQ[{a, b, c, d, 
e, f, g, h, p}, x] && LtQ[m, -1] && GtQ[n, 0] && IntegersQ[2*m, 2*n, 2*p]
 

rule 176
Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]* 
Sqrt[(e_) + (f_.)*(x_)]), x_] :> Simp[h/f   Int[Sqrt[e + f*x]/(Sqrt[a + b*x 
]*Sqrt[c + d*x]), x], x] + Simp[(f*g - e*h)/f   Int[1/(Sqrt[a + b*x]*Sqrt[c 
 + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && Sim 
plerQ[a + b*x, e + f*x] && SimplerQ[c + d*x, e + f*x]
 
3.27.68.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(242\) vs. \(2(116)=232\).

Time = 1.27 (sec) , antiderivative size = 243, normalized size of antiderivative = 1.52

method result size
elliptic \(\frac {\sqrt {-\left (-1+2 x \right ) \left (3+5 x \right ) \left (2+3 x \right )}\, \left (-\frac {2 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{3645 \left (\frac {2}{3}+x \right )^{3}}+\frac {86 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{2835 \left (\frac {2}{3}+x \right )^{2}}-\frac {6446 \left (-30 x^{2}-3 x +9\right )}{6615 \sqrt {\left (\frac {2}{3}+x \right ) \left (-30 x^{2}-3 x +9\right )}}-\frac {9838 \sqrt {10+15 x}\, \sqrt {21-42 x}\, \sqrt {-15 x -9}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{138915 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}-\frac {63176 \sqrt {10+15 x}\, \sqrt {21-42 x}\, \sqrt {-15 x -9}\, \left (-\frac {7 E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{6}+\frac {F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{2}\right )}{138915 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}\right )}{\sqrt {1-2 x}\, \sqrt {2+3 x}\, \sqrt {3+5 x}}\) \(243\)
default \(\frac {2 \left (79893 \sqrt {5}\, \sqrt {7}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right ) x^{2} \sqrt {2+3 x}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}-142146 \sqrt {5}\, \sqrt {7}\, E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right ) x^{2} \sqrt {2+3 x}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}+106524 \sqrt {5}\, \sqrt {7}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right ) x \sqrt {2+3 x}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}-189528 \sqrt {5}\, \sqrt {7}\, E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right ) x \sqrt {2+3 x}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}+35508 \sqrt {5}\, \sqrt {2+3 x}\, \sqrt {7}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )-63176 \sqrt {5}\, \sqrt {2+3 x}\, \sqrt {7}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}\, E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )-2610630 x^{4}-3660633 x^{3}-664338 x^{2}+909114 x +332271\right ) \sqrt {1-2 x}\, \sqrt {3+5 x}}{19845 \left (10 x^{2}+x -3\right ) \left (2+3 x \right )^{\frac {5}{2}}}\) \(314\)

input
int((3+5*x)^(5/2)*(1-2*x)^(1/2)/(2+3*x)^(7/2),x,method=_RETURNVERBOSE)
 
output
(-(-1+2*x)*(3+5*x)*(2+3*x))^(1/2)/(1-2*x)^(1/2)/(2+3*x)^(1/2)/(3+5*x)^(1/2 
)*(-2/3645*(-30*x^3-23*x^2+7*x+6)^(1/2)/(2/3+x)^3+86/2835*(-30*x^3-23*x^2+ 
7*x+6)^(1/2)/(2/3+x)^2-6446/6615*(-30*x^2-3*x+9)/((2/3+x)*(-30*x^2-3*x+9)) 
^(1/2)-9838/138915*(10+15*x)^(1/2)*(21-42*x)^(1/2)*(-15*x-9)^(1/2)/(-30*x^ 
3-23*x^2+7*x+6)^(1/2)*EllipticF((10+15*x)^(1/2),1/35*70^(1/2))-63176/13891 
5*(10+15*x)^(1/2)*(21-42*x)^(1/2)*(-15*x-9)^(1/2)/(-30*x^3-23*x^2+7*x+6)^( 
1/2)*(-7/6*EllipticE((10+15*x)^(1/2),1/35*70^(1/2))+1/2*EllipticF((10+15*x 
)^(1/2),1/35*70^(1/2))))
 
3.27.68.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.07 (sec) , antiderivative size = 108, normalized size of antiderivative = 0.68 \[ \int \frac {\sqrt {1-2 x} (3+5 x)^{5/2}}{(2+3 x)^{7/2}} \, dx=-\frac {270 \, {\left (87021 \, x^{2} + 113319 \, x + 36919\right )} \sqrt {5 \, x + 3} \sqrt {3 \, x + 2} \sqrt {-2 \, x + 1} + 141907 \, \sqrt {-30} {\left (27 \, x^{3} + 54 \, x^{2} + 36 \, x + 8\right )} {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right ) + 1421460 \, \sqrt {-30} {\left (27 \, x^{3} + 54 \, x^{2} + 36 \, x + 8\right )} {\rm weierstrassZeta}\left (\frac {1159}{675}, \frac {38998}{91125}, {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right )\right )}{893025 \, {\left (27 \, x^{3} + 54 \, x^{2} + 36 \, x + 8\right )}} \]

input
integrate((3+5*x)^(5/2)*(1-2*x)^(1/2)/(2+3*x)^(7/2),x, algorithm="fricas")
 
output
-1/893025*(270*(87021*x^2 + 113319*x + 36919)*sqrt(5*x + 3)*sqrt(3*x + 2)* 
sqrt(-2*x + 1) + 141907*sqrt(-30)*(27*x^3 + 54*x^2 + 36*x + 8)*weierstrass 
PInverse(1159/675, 38998/91125, x + 23/90) + 1421460*sqrt(-30)*(27*x^3 + 5 
4*x^2 + 36*x + 8)*weierstrassZeta(1159/675, 38998/91125, weierstrassPInver 
se(1159/675, 38998/91125, x + 23/90)))/(27*x^3 + 54*x^2 + 36*x + 8)
 
3.27.68.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {1-2 x} (3+5 x)^{5/2}}{(2+3 x)^{7/2}} \, dx=\text {Timed out} \]

input
integrate((3+5*x)**(5/2)*(1-2*x)**(1/2)/(2+3*x)**(7/2),x)
 
output
Timed out
 
3.27.68.7 Maxima [F]

\[ \int \frac {\sqrt {1-2 x} (3+5 x)^{5/2}}{(2+3 x)^{7/2}} \, dx=\int { \frac {{\left (5 \, x + 3\right )}^{\frac {5}{2}} \sqrt {-2 \, x + 1}}{{\left (3 \, x + 2\right )}^{\frac {7}{2}}} \,d x } \]

input
integrate((3+5*x)^(5/2)*(1-2*x)^(1/2)/(2+3*x)^(7/2),x, algorithm="maxima")
 
output
integrate((5*x + 3)^(5/2)*sqrt(-2*x + 1)/(3*x + 2)^(7/2), x)
 
3.27.68.8 Giac [F]

\[ \int \frac {\sqrt {1-2 x} (3+5 x)^{5/2}}{(2+3 x)^{7/2}} \, dx=\int { \frac {{\left (5 \, x + 3\right )}^{\frac {5}{2}} \sqrt {-2 \, x + 1}}{{\left (3 \, x + 2\right )}^{\frac {7}{2}}} \,d x } \]

input
integrate((3+5*x)^(5/2)*(1-2*x)^(1/2)/(2+3*x)^(7/2),x, algorithm="giac")
 
output
integrate((5*x + 3)^(5/2)*sqrt(-2*x + 1)/(3*x + 2)^(7/2), x)
 
3.27.68.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {1-2 x} (3+5 x)^{5/2}}{(2+3 x)^{7/2}} \, dx=\int \frac {\sqrt {1-2\,x}\,{\left (5\,x+3\right )}^{5/2}}{{\left (3\,x+2\right )}^{7/2}} \,d x \]

input
int(((1 - 2*x)^(1/2)*(5*x + 3)^(5/2))/(3*x + 2)^(7/2),x)
 
output
int(((1 - 2*x)^(1/2)*(5*x + 3)^(5/2))/(3*x + 2)^(7/2), x)